A fast speaker adaptation method using aspect model
نویسندگان
چکیده
We propose a fast speaker adaptation method using an aspect model. The performance of speaker independent (SI) model is very sensitive to environments such as microphones, speakers, and noises. Speaker adaptation techniques try to obtain near speaker dependent (SD) performance with only small amounts of specific data and are often based on initial SI model. One of the most important purposes for adaptation algorithms is to modify a large number of parameters with only a small amount of adaptation data. The number of free parameters to be estimated from adaptation data can be reduced by using aspect model. In this paper, we introduce an aspect model into an acoustic model for rapid speaker adaptation. A formulation of probabilistic latent semantic analysis (PLSA) is extended to continuous density HMM. We carried out an isolated word recognition experiment on Korean database, and the results are compared to those of conventional expectation maximization (EM) algorithm, maximum a posteriori (MAP) and maximum likelihood linear regression (MLLR).
منابع مشابه
Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملRapid and effective speaker adaptation of convolutional neural network based models for speech recognition
Recently, we have proposed a novel fast adaptation method for the hybrid DNN-HMM models in speech recognition [1]. This method relies on learning an adaptation NN that is capable of transforming input speech features for a certain speaker into a more speaker independent space given a suitable speaker code. Speaker codes are learned for each speaker during adaptation. The whole multi-speaker tra...
متن کاملPerformance improvement of connected digit recognition using unsupervised fast speaker adaptation
In this paper, we investigate unsupervised fast speaker adaptation based on eigenvoice to improve the performance of Korean connected digit recognition over the telephone channel. In addition, utterance verification is introduced into speaker adaptation to examine whether input utterance is appropriate to adaptation or not. Performance evaluation showed that the proposed method yielded performa...
متن کاملAdvanced Feature Normalization and Rapid Model Adaptation for Robust In- Vehicle Speech Recognition
In this study, we present advanced feature normalization and rapid model adaptation for robust in-vehicle speech recognition. For feature normalization, we use a combination of recently established quantile-based cepstral dynamics normalization (QCN) and low pass temporal filtering (RASTALP). Similar to cepstral mean normalization (CMN), QCN aims at alleviating the mismatch between ASR acoustic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008